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Abstract

This paper presents a method to recognize human ac-
tions from sequences of depth maps. Specifically, we employ
an action graph to model explicitly the dynamics of the ac-
tions and a bag of 3D points to characterize a set of salient
postures that correspond to the nodes in the action graph.
In addition, we propose a simple, but effective projection
based sampling scheme to sample the bag of 3D points
from the depth maps. Experimental results have shown that
over 90% recognition accuracy were achieved by sampling
only about 1% 3D points from the depth maps. Compared
to the 2D silhouette based recognition, the recognition er-
rors were halved. In addition, we demonstrate the potential
of the bag of points posture model to deal with occlusions
through simulation.

1. Introduction

Recognition of human actions has been an active re-
search topic in computer vision. In the past decade, re-
search has mainly focused on leaning and recognizing ac-
tions from video sequences captured from a single camera
and rich literature can be found in a wide range of fields in-
cluding computer vision, pattern recognition, machine lean-
ing and signal processing [14]. Among the different types of
visual input, silhouettes and spatio-temporal interest points
(STIPs) are most widely used [8]. However, as the imaging
technology, especially real-time 3D shape measurement us-
ing fringe projection techniques [20], advances, it becomes
feasible and also economically sound to capture in real-time
not only the conventional two-dimensional (2D) color im-
age sequences, but also the sequences of depth information.
This paper studies the recognition of human actions from

sequences of depth maps.

(a) Draw tick

(b) Tennis serve

Figure 1. Examples of the sequences of depth maps for actions:
(a) Draw tick and (b) Tennis serve
.

Figure 1 shows nine depth maps of typical depth se-
quences for actions Draw tick and Tennis serve. As seen,
the depth map provides additional shape information of the
body and is expected to be helpful in distinguishing the ac-
tions that may generate similar 2D silhouettes when cap-
tured from a single view. However, the depth map also sub-
stantially increases the amount of the data to be processed.
Effective and efficient use of the depth information is a key
to a computationally efficient algorithm for action recogni-
tion based on the sequences of depth maps.

As it is well known, the human body is an articulated
system of rigid segments connected by joints and human
motion is often considered as a continuous evolution of the
spatial configuration of the segments or body posture [18].
Given a sequence of depth maps, if the body joints can be
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reliably extracted and tracked, action recognition can be
achieved by using the tracked joint positions. However,
tracking of body joints from depth maps is still an unsolved
problem. In addition, most real-time depth cameras can
only produce coarse and noisy depth maps. This paper aims
to develop a technique that does not require joint tracking.
We adopt the expandable graphical model [8] to explicitly
model the temporal dynamics of the actions and propose to
use a bag of 3D points (BOPs) extracted from the depth map
to model the postures. An action graph is constructed from
the training samples to encode all actions to be recognized.
Every action is encoded in one or multiple paths in the ac-
tion graph and each node in the action graph represents a
salient posture that is shared by all actions. Our idea is to
use a small set of 3D points to characterize the 3D shape of
each salient postures and to use Gaussian Mixture Model
(GMM) to effectively and robustly capture the statistical
distribution of the points. To this end, we propose a sim-
ple but effective projection based method to sample a very
small set of representative 3D points from the depth maps.
Experimental results have shown that over 90% recogni-
tion accuracies are achieved by only sampling 1% 3D points
from the depth maps. Compared to the 2D silhouette based
recognition, the recognition errors were halfed. In addition,
we have demonstrated the potential of the bag of points pos-
ture model to deal with occlusions through simulation.

The rest of the paper is organized as follows. Section 2
gives a short review of the recent advance on silhouette
based human action recognition. Section 3 describes the
action graph based on the concept of bag-of-points. In Sec-
tion 4, the projection-based 3D points sampling scheme is
presented. Experimental results are given in Section 5 and
discussion and future extension of the proposed method are
presented in Section 6

2. Related work
A rich palette of diverse ideas has been proposed dur-

ing the past few years on the problem of recognition of
human actions by employing different types of visual in-
formation. Among them, silhouettes and spatio-temporal
interesting points (STIPs) have been most widely used vi-
sual features. However, to our best knowledge, there are
few reports so far on action recognition using depth maps.
Therefore, This section presents a review on the work of
silhouette-based action recognition since it is most relevant
to the work presented in this paper. Review on other types of
visual features, such as STIPs and skeletons, can be found
in [12, 11, 14, 8].

Use of silhouettes as input to recognize human actions
in general follows the concept that human motion can be
considered as a continuous evolution of the body pose and
is mainly driven by the background modeling techniques
and application of video surveillance. Silhouettes can effec-

tively describe the shape of body poses. Methods proposed
in the past for silhouette-based action recognition can be
classified into two categories. One is to extract action de-
scriptors from the sequences of silhouettes. Conventional
classifiers are used for the recognition. In this approach,
the action descriptors are supposed to capture both spatial
and temporal characteristics of the actions. For instance,
in the early work by Bobick and Davis [2], the silhouettes
are stacked together to form a motion energy images (MEI)
and motion history images (MHI). Seven Hu moments [6]
are extracted from both MEI and MHI to serve as action de-
scriptors. Action recognition is based on the Mahalanobis
distance between each moment descriptor of the known ac-
tions and the input one. Meng [10] extended the MEI and
MHI into a hierarchical form and used a Support Vector
Machine (SVM) to recognize the actions. In the method
proposed by Chen et al. [3], star figure models were fitted
to silhouettes to capture the five extremities of the shape
that correspond to the arms, legs and head. Gaussian mix-
ture models were used to model the spatial distribution of
the five extremities over the period of an action, ignoring
the temporal order of the silhouettes in the action sequence.
Davis and Yyagi [5] also used GMM to capture the distri-
bution of the moments of a silhouette sequence.

The other category of the methods is to extract features
from each silhouette and model the dynamics of the ac-
tion explicitly, often using statistical models such as hidden
Markov models(HMM), graphical models (GM) and con-
ditional random fields (CRF). The feature extracted from
each silhouette is to capture the shape of the body and pos-
sible local motion. For instance, Divis and Tyagi [5] used
moments to describe shapes of a silhouette and continuous
HMM to model the dynamics. In [7], Kellokumpu et al.
chose Fourier shape descriptors and classified the postures
into a finite number of clusters. Discrete HMM are then
used to model the dynamics of the actions where the posture
clusters are considered to be the discrete symbols emitted
from the hidden states. Sminchisescu et al. [13] relaxed the
HMM assumption of conditional independence of observa-
tions given the actions by adopting the CRF model. Zhang
and Gong [19] extracted the spectrum of the chain-code of
the silhouettes and motion moment as the feature and pro-
posed a modified hidden conditional random field (HCRF)
to model the dynamics of the actions. Veerarahavan, et
al. [15] adopted Kendall’s representation of shape as shape
features and proposed to use autoregressive (AR) model and
autoregressive and moving average (ARMA) model to cap-
ture the kinematics of the actions. In the work by Wang
and Suter [16], Locality Preserving Projection (LPP) was
employed to learn a subspace to describe the postures and
DTW and temporal Huasdorff distance to classify the ac-
tions in the subspace. Colombo, et al. [4] proposed to find
the subspace for each type of actions through principal com-



ponent analysis (PCA). Li et al. [8] extracted the holistic
motion and 32 2D points from the contour of the silhou-
ettes as the feature and constructed an expandable graphical
model to represent the postures and dynamics of the pos-
tures explicitly. In the most recent work, Yu and Aggar-
wal [17] proposed to use the five extremities extracted from
the silhouettes as a semantic posture presentation. The dis-
tribution of the five extremities represented as a histogram
similar to Belongies’s shape-context [1] was used as the fea-
ture for the construction of a HMM for each action.

From the extensive work on silhouette based action
recognition, we have observed that silhouettes contain rich
shape information of the body. However, most shape infor-
mation is carried by the points on the contour rather than the
points inside the silhouettes. Even the points on the contour
appear to have redundancy as the body shape can be well
described by five extremities if they are extracted correctly.
This observation forms the core concept of the method pro-
posed in this paper and is extended to the 3D case.

3. Action graph based on bag-of-points
Action graph [8] is an effective method to explicitly

model the dynamics of human motion based on a set of
salient postures shared among the actions. An action
graph that encodes L actions with M salient postures Ω =
{ω1, ω2, · · · , ωM} can be represented as

G = {Ω, A,A1, A2, · · · , AL}, (1)

where each posture serves as a node, Ak =
{p(ωj |ωi, ψk)}k=1:L

i,j=1:M is the transitional probability
matrix of the k′th action ψk and A = {p(ωj |ωi)}M

i,j=1 is
the global transitional probability matrix of all actions.

An action recognition system that is built upon the action
graph can be then described by a quadruplet,

Γ = (Ω,Λ, G,Ψ), (2)

where

Ω = {ω1, ω2, · · · , ωM} (3)
Λ = {p(x|ω1), p(x|ω2), · · · , p(x|ωM )}
G = (Ω, A,A1, A2, · · · , AL)
Ψ = (ψ1, ψ2, · · · , ψL).

p(x|ωi) is the probability of an instantaneous observation
x realized from the salient posture ωi; ψi denotes the i′th
trained action. Given such a system Γ and a sequence of
observations X = {x1, x2, · · · , xn}, five different decod-
ing schemes [8] can be used to recognize the most likely
action that produces X . In this paper, we adopt bi-gram
with maximum likelihood decoding (BMLD) scheme since
it requires least computing resources. More details can be
found in [8].

One of the key components in training the system Γ is to
construct an action graph from the training samples. Li et
al. [9, 8] proposed to cluster all training poses (frames) into
M clusters, each cluster representing a salient posture. This
method has been successfully applied to silhouette based
action recognition where the external contour of the silhou-
ettes and holistic motion were used as the feature to charac-
terize the posture.

In this paper, we propose to describe the salient postures
using a bag-of-points (BOPs), x = {qi, i = 1, 2, · · · ,m},
where point qi can be a pixel belonging to a silhouette or a
STIP. Notice that each posture may have different number
of points and there is no correspondence between the points
of different postures. Furthermore, we assume that the dis-
tribution of the points for a posture can be approximated by
a mixture of Q Gaussian components and these points are
statistically independent. Consequently, the posture model
can be simply represented as the joint distribution of the
points. That is,

p(x|ω) =
m∏

i=1

Q∑
t=1

πω
t g(qi, µ

ω
t ,Σ

ω
t ) (4)

where g(·) is a Gaussian function.
In the case that the input is a sequence of depth maps, a

simple approach is to consider that x consists of all the 3D
points from the depth map since this depth map represents
the 3D surface of the body with respect to the viewpoint and
adequately captures the shape of the body (or pose). How-
ever, such an approach will require huge amount of compu-
tation due to the number of 3D points involved and also may
be severely interfered by the noise in the depth map. On the
other hand, the study of using the extreme points of 2D sil-
houettes for action recognition has suggested that a small
set of representative 3D points sampled from the depth map
should be sufficient to capture the shape of the body. In
the next section, we present a simple yet effective sampling
scheme based on the projections of the depth map.

4. Sampling of 3D Points
Previous research on 2D silhouette-based action recog-

nition has shown that the contour and the extreme points
of the contour carries much shape information of the body.
A simple way to sample the representative 3D points is to
extract the points on the contours of the planar projections
of the 3D depth map. Depending on the number of projec-
tion planes used, however, the number of points can still be
large. Therefore, in this paper we adopt to project the depth
map onto the three orthogonal Cartesian planes and further
sample a specified number of points at equal distance along
the contours of the projections . Figure 2 shows the sam-
pling process which consists of projection, contour sam-
pling and retrieval of the 3D points that are nearest to the



sampled 2D points. There may be multiple 3D points that
are nearest to a 2D point, our current implementation is to
randomly select one of them. Notice that the projections to
the xz− and zy− plane can be very coarse due to the reso-
lution of the depth map and interpolation may be required in
order to construct these projections. In addition, each pro-
jection may have multiple unconnected regions, contours of
all regions are sampled.

5. Experimental results

5.1. Dataset and setup

Since no public benchmarking datasets which supplies
the sequences of depth maps are available, we collected a
dataset that contains twenty actions: high arm wave, hori-
zontal arm wave, hammer, hand catch, forward punch, high
throw, draw x, draw tick, draw circle, hand clap, two hand
wave, side-boxing,bend, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing, pickup & throw. Each
action was performed by seven subjects for three times. The
subjects were facing the camera during the performance.
The depth maps were captured at about 15 frames per sec-
ond by a depth camera that acquires the depth through struc-
ture infra-red light. The size of the depth map is 640× 480.
Altogether, the dataset has 23797 frames of depth maps for
the 4020 action samples.

Notice that the 20 actions were chosen in the context of
using the actions to interact with game consoles. They rea-
sonably cover the various movement of arms, legs, torso and
their combinations. In addition, if an action is performed by
a single arm or leg, the subjects were advised to use their
right arm or leg.

Due to the large amount of computation involved in clus-
tering the training samples into salient postures, we divided
the 20 actions into three subsets, each having 8 actions. Ta-
ble 1 lists the three action subsets used in the experiments.
The AS1 and AS2 were intended to group actions with sim-
ilar movement, while AS3 was intended to group complex
actions together. For instance, action hammer is likely to be
confused with forward punch and action pickup & throw is
a composition of bend and high throw in AS1.

In all the experiments, we first down-sampled the depth
map by factor of 2 (for the sake of computation) and then
sampled 80 3D points from the down-sampled depth map.
The 80 3D points represent about 1% of the depth points
in the down-sampled map and about 0.25% of the original
depth map. Among the 80 3D points, 45% (i.e.36 points)
were alloacted to the xy-projection, 30% (i.e. 24 points)
to the zy-projection and 25% (i.e. 20 points) to the zx-
projection. In all the experiments reported below, training
samples were clustered using the Non-Euclidean Relational
Fuzzy (NERF) C-Means and the disimilarity between two
depth maps was caluclated as the hausdorf distance between

Action Set 1 Action Set 2 Action Set 3
(AS1) (AS2) (AS3)

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick

Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

Table 1. The three subsets of actions used in the experiments

Test One Test Two Cross Subject Test
AS1 89.5% 93.4% 72.9%
AS2 89.0% 92.9% 71.9%
AS3 96.3% 96.3% 79.2%
Overall 91.6% 94.2% 74.7%

Table 2. Recognition accuracies of different tests. In test one, 1/3
of the samples were used as training samples and the rest as testing
samples; in test two, 2/3 samples were used as training samples;
and in the cross subject test, half of the subjects were used as train-
ing and the rest subjects were used as testing.

the two sets of the sampled 3D points. Both the number of
postures and the number of Gaussian components to model
the posture were set to 45.

5.2. Results

Experiments were conducted using different number of
training samples in order to evaluate the performance of the
proposed method. Table 2 reports respectively the average
recognition accuracies when one third of the samples, two
third of the samples and samples from half of subjects were
used as training. The results have shown that the 80 3D
points have captured the body shape very well given the
high recognition accuracies.

Notice that the accuracies in the cross subject test are
relatively low. This is probably due to the small number
of subjects and also the significant variations of the same
action performed by different subjects. During the data col-
lection, subjects were free to choose the style of the actions.
For instance, some subjects chose to perform the hand clap
without stretching their arms whereas others did. It is ex-
pected that more subjects are required in order to improve
the cross subject performance.

5.3. Simulation of occlusion

One of the advantages using BOPs representation is its
potential to deal with occlusion. In this experiment, we di-
vided the depth map into four quadrants as shown in Fig-
ure 3. Occlusion was simulated by ignoring among the 80



Figure 2. The process of sampling 3D representative points from a depth map.

Figure 3. Simulation of occlusion. The depth map is divided into
four quadrants.

sampled 3D points those points that fell into the specified
occluded quadrants.

We selected the best action graphs trained for the three
action subsets respectively and ran through the simulation.
Table 3 shows the recognition accuracies after the specified
quadrants were omitted during the test. The results have
shown that, unless the critical quadrants, for instance, Q1
and Q2 for AS1, were missing, the performance drop was
relatively small.

5.4. Comparison to 2D silhouettes

Experiments were also conducted to evaluate the recog-
nition accuracy of using 2D silhouettes. We extracted the

Occluded Quadrants AS1 AS2 AS3
none 98.2% 98.2% 100%
Q1 80.4% 75.0% 88.9%
Q2 91.1% 91.1% 91.8%
Q3 96.4% 94.7% 96.3%
Q4 98.2% 92.9% 94.5%

Q1+Q2 62.5% 95.5% 85.2%
Q3+Q4 91.1% 94.7% 96.3%
Q2+Q3 82.2% 89.3% 95.5%
Q1+Q4 91.1% 94.7% 96.3%

Table 3. Recognition accuracies for the simulated occlusion.

2D silhouettes using xy-projections and 80 points were
sampled from the contour of each 2D silhouette. With the
same number of postures, the same number of Gaussian
components for each posture and the same number of train-
ing samples, Table 4 shows the recognition accuracies based
on the 2D silhouettes. Compared to the 3D results shown in
Table 2, it can be seen that error rates are doubled. This
is probably because the action samples are captured from
the front viewpoint and depth plays a key role in describing
the shape of the posture in many of the 20 actions, such as
hammer, forward punch, forward kick and draw tick. For
example, a subject moves his hand in front of his body (not
to the side) to perform the action draw tick, the tip of the
hand will likely be a sampled point in the 3D representa-
tion, but it would not be selected in the 2D representation



Test One Test Two Cross Subject Test
AS1 79.5% 81.3% 36.3%
AS2 82.2% 88.7% 48.9%
AS3 83.3% 89.5% 45.8%
Overall 81.7% 86.5% 43.7%

Table 4. Recognition accuracies based on 2D silhouettes

because it is not on the silhouette contour.

6. Discussion and Future work

This paper presents a study on recognizing human ac-
tions from sequences of depth maps. We have employed the
concept of BOPs in the expandable graphical model frame-
work to construct the action graph to encode the actions.
Each node of the action graph which represents a salient
postures is described by a small set of of representative 3D
points sampled from the depth maps. Experimental results
have clearly shown the promising performance of the pro-
posed method and also the advantages of using 3D points
over the 2D silhouettes. Our plan is to collect more data
from more subjects and run the proposed method through
all 20 actions at same time instead of dividing them into
three subsets in the near future.

Arguably, those actions that were performed by a single
arm can be recognized by the recognition methods designed
for arm gestures. In these methods, the arm is often tracked
and recognition is often based on its trajectory. However,
our method provides a unified framework for the actions
performed by both single or multiple parts of the body and,
most importantly, it does not require tracking.

Viewpoint variance is an important, but challenging
problem in action recognition. We note that the current sam-
pling scheme is view dependent. Use of the 3D points offers
a potential to extend the proposed approach into a view in-
variant one. This is currently being studied by the authors.
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